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* ABSTRACT

Current fault simulation techniques such as concurrent, deductive,

and parallel fault simulation are not powerful enough for today's very

large integrated circuit designs. More powerful fault simulation tech-

niques are needed to prevent a crisis in integrated circuit testing. A

new simulation technique based on the well-known concurrent and deduc-

tive techniques is presented, which uses a hierarchical representation

of the circuit design and unlike the traditional implementations of

these techniques does not expand the circuit to a single, lowest level,

description. The simulation technique is shown to be decoupled from the

fault model of the circuit through the use of fault libraries. These -

IKI libraries are based on the principle that any detectable fault will

cause an erroneous output value for some input vector. The implementa-

tion of this technique is described and preliminary performance results

are given. The advantages and disadvantages of this technique are dis-

cussed and possible enhancements are described.
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* 1. INTRODUCTION

Simulation is the technique of approximating the response of a sys-

tem to a stimulus by evaluating a model of the system. The accuracy or

the model determines how closely the simulation approximates the actual

system and greater accuracy is usually more expensive in terms of com-

puter time and space. When the computation time becomes unacceptably

long, or the space requirements exceed the capabilities of the computer,

simulation becomes impractical. The alternatives to this situation are:

use a larger, faster computer; reduce the computational requirements by

simplifying the models; break the system into smaller pieces and simu-

late each piece separately; or use more efficient algorithms.

The first approach, using larger, faster computers, is practical in

some instances, but many simulation algorithms show second order effects

(or worse) [1,21 in time and space so a machine four times "bigger"

would be required to simulate a system only twice as large. Clearly

this is an expensive solution, and many problems exist which cannot be

simulated on any machine in existence today.

The second approach, simplirying the models, has been successful,

but it involves trading accuracy for speed and space. A typical example

or this method is using logic simulation instead of circuit simulation

to simulate large, integrated circuit designs. Circuit simulators can

handle on the order or 100 transistors [3], while logic simulation can
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handle several thousand transistor circuits. The tradeoff is reduced

accuracy of signal values, and in some designs may yield values that are

wrong. The user of a simulator must be aware of the limitations imposed

by simulation models and stay well within these limitations to avoid

incorrect results. Since very few physical systems can be modelled per-

fectly, this is a fundamental problem in simulation, and the user should

always check the results of a simulation for validity. The accuracy

versus speed and space problem has led to the development of multi-mode

simulation where circuit simulation (most expensive) is used for criti-

* cal timing paths, logic simulation (less expensive) is used for other

circuitry directly interacting with the critical path, and functional

simulation (least expensive) for the remaining parts of the system [4).

The third approach, partitioning the circuit, can be difficult and

tedious for the user [5,6,73. In cases where the simulation algorithm

is at least 0(n 2 ), partitioning may dramatically increase throughput by

* reducing the number of primitives the algorithm deals with at any one

time. That is, a large N2 is much greater than the sum of its squared

factors. Even for a linear algorithm, if the circuit is so large that

frequent page faults seriously degrade the performance of the simulator,

partitioning can improve throughput by reducing the page fault rate, but

the total amount of work required to evaluate the circuit primitives

remains unchanged. Manual partitioni, g is a poor means of fitting the

circuit to the simulator, because it is tedious and error prone.
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The final approach, using more efficient algorithms, can be viewed

as the evolution of a particular style of simulation. For example, the

earliest fault simulations were done with logic simulators and the

faults were injected by manually altering the system being tested [8].

Fault simulation quickly evolved to specialized simulators that automat-

ically injected the faults, and then to more efficient algorithms for

perfo.-- ing this simulation. This evolution led to the parallel simula-

tor which provided tremendous speedup by simulating several closely

related machines at the same time. Parallel simulation is still a popu-

lar simulation technique. From parallel simulation, deductive [9) and

concurrent (10) simulation were the next major developments in fault

simulation algorithms. These techniques are fundamentally different

from parallel simulation because they determine all detectable faults in

the system, for a particular input vector, in one pass instead of many

passes. These techniques have been the subject of current research and

development in fault simulation and are becoming quite popular in indus-

try. Experience has shown that these techniques are more efficient on

large 5ystems than parallel simulation, but they require much more
S

memory [11]. Since the price of computer memory is decreasing rapidly,

concurrent and deductive fault simulation techniques are steadily becom-

ing more attractive.

1.1. Terminology

A failure is a defect which if present in the circuit may, under

the appropriate conditions, cause the circuit to behave incorrectly.

" - . . . . . . • . . . . • . , . ' , . +° ..- - -- - - ---- -,@ . .. ? ..-- •- " "- - -' " .. *.*. ' . '. - - - - - -



The description of the effect of this failure at some level of abstrac-

tion is called a fault. The incorrect behavior of the fault is called

an error. The term fault is often used interchangeably in the litera-

ture where error is really meant. Errors are said to propagate (through

a module) when the error presented at the input to the module causes an

incorrect response (error) at the outputs of the module. If no

incorrect response is generated, then the error is said to be absorbed

or blocked. If, for the input stimulus and a particular fault, no error

is produced at the primary outputs, then that fault is undetectable

under the current input. In the case of sequential circuits, the

current and all previous inputs must be considered. If the fault

remains undetectable for all possible input stimuli, then the fault is

an undetectabfe fault.

There are two intrinsic tasks which a fault simulator must perform:

fault activation and fault propagation. Activation is the process of

deciding which internal faults can affect the outputs of a module, given

the input stimulus, and propagation is the process of deciding if the

faults present at the inputs of a module can be detected at the outputs
0

of the module. The activation process used by the author is based on a

table lookup technique and is described in Chapter 3.

0 1.2. Research Goals

We believe that the use of hierarchy wherever possible is important

to improve simulator performance in several ways. The hierarchical

representation of a system is more compact, which helps increase the

S , . - . " " ." .' ; - , - "" ' ' ' ". . ..... .- " ... .' ' .. - .-; ' ; . .- -' " - " " "
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3 size of the system that can be simulated. This hierarchical representa-0

tion also allows the user to control the complexity of the simulation by

controlling the complexity of the system description [12]. The

hierarchical description of a system also affords different perspectives9

of the system which are difficult to obtain from a flat system descrip-

tion. These perspectives are invaluable for tools that require

knowledge of the system structure, such as fault diagnosis and test gen-

eration tools [13]. There appears to be a trend toward hierarchical

representations of systems for computer-aided design (CAD) tools because

using hierarchy is a natural technique for reducing the apparent comn-

plexity of a system by providing abstractions of each level of the sys-

tem [5,14I,15]. In order to fully utilize the power of hierarchical

* representation the tools must use the'hierarchy internally, rather than

flattening a hierarchical description, and perform all reporting to the

user in terms of the hierarchy. For these compelling reasons we believe

it is important to orient our work towards hierarchical representations.

The goals of this research were to develop an alternative fault

simulation technique that was based on hierarchical system evaluation.

We also wanted our technique to incorporate the advantageous features of

both concurrent and deductive simulation, but without many of the disad-

vantages. The hybrid technique which is detailed in Chapter 3 is

inherently hierarchical and uses an unordered list-based propagation

technique. Thiz avoids the ordered list operations and deduction equa-

tions of the deductive technique and also avoids (when possible) the

replication of machines which penalizes the concurrent technique.



Most fault simulators are tied to a particular technology through

the fault model embedded in the simulator. Changing the fault model

usually requires modifying the simulator, a task few users want to per-

form. Our final goal then was to increase the usefulness of our fault

simulation technique by decoupling the fault model from the simulator,

so that a change in fault models requires changing data files, not modi-

fying programs.

•6- - - .' - . . . . ' . . " -- . .. . . . ' - - " ' -' ' - " .



*2. COMPARISON OF FAULT SIMULATION TECHNIQUES

- An informal comparison of simulation techniques quickly shows why

concurrent simulation is more efficient than parallel simulation. It

also shows why parallel simulation performs better for smaller circuits,

and concurrent simulation for larger circuits. For any type of fault

simulator, each fault must be examined and its consequences applied to

the circuit. Since the circuit is represented as a collection of simu-

lator primitives, the effect of these faults must be determined from

evaluating the primitives, and similarly the effect of the faults on

other parts of the system must be determined by applying the result ofI
the faults to these other elements to determine their response.

If the various simulation techniques can be modelled by equations

derived from characteristics of the simulation algorithms, then these

equations can be used to predict simulator performance. In this chapter

simple performance models of parallel, deductive, and concurrent fault

simulation are derived from their algorithms. These models are used to

help explain the performance characteristics of the various techniques.

Finally, the models are used to hypothesize approaches to improving

fault simulator performance. To simplify the models, we neglect any

one-time overhead such as initialization or output which is relatively

independent of the circuit size or composition and assume measured aver-

ages for terms that vary with circuit topology or input stimulus. The



cost factor derived here is called the primitive fault product or PFP

and is a function of the following parameters:

F = total number of possible faults for the circuit
f = average number of faults for each primitive (parallel)
fP = average number of faults for each primitive (deductive)
f" = average number of faults for each primitive (concurrent)
w = word width of the target computer
b = number of bits used to represent a logical value
P = number of circuit elements (simulator primitives)
K = (w/b) - 1 (faulty machines evaluated in parallel)
a = activity factor in event-driven simulation (O<a<<1)
b = fault collapsing factor (O<b<1)
c = cost per evaluation (cpu seconds)

Since changes in input may not affect many of the signals within a sys-

tem being simulated, event-driven simulation improves performance by

evaluating only the signals that change (the activity). Typically, this

activity affects only 5-20% of the system, so 80% or more of the evalua-

tion performed by a compiled simulator is avoided. The activity factor

a -ccounts for this improvement. The fault collapsing factor b accounts

for the reduction in the number of faults the simulator deals with due

to fault folding, fault collapsing, and fault dominance. Evaluations

for the cost factor c are the number of then most meaningful simulator

events for each technique. For parallel simulation, an evaluation is

the processing of one primitive for a group of machines. In deductive

and concurrent simulation, an evaluation is the processing of one fault

0
or list of equivalent faults.

0 , ".% ' -



U 2.1. Parallel Fault Simulation

In parallel fault simulation, word instructions are used to evalu-

ate the same device in several different faulty machines at the same

time. The virtual data structure, shown in Figure 1, demonstrates how

this is accomplished. The columns represent the nodes of the circuit

and the rows represent the different faulty machines. Row 0 represents

the fault-free circuit. Because the nodes are aligned with the words,

and the faulty machines across the words, a computer instruction, per-

forming a logical operation on two words, simultaneously performs the

evaluation of that operation on the same nodes for several different

machines. This parallelism significantly speeds up the fault simula-

tion. The speedup factor depends on how many machines can be packed

into one word. A more detailed explanation of the parallel fault simu-

NODES

ABCDEFG.
S GOOD

MACH INE-0

F 2
A 3
U 4.
L 5
T 6
S 7

Figure 1. Virtual Data Structure for Parallel Simulation



10 *

lation algorithm can be found in [8).

The virtual data structure previously described can also be used to

develop a measure of the computation performed during a fault simula-

tion. The evaluation of all faulty machines requires either F/K or

F/K.1 passes. Since each primitive must be evaluated at least once per

pass, in a compiled simulation (more if the circuit contains feedback

loops), the total number of evaluations performed is P*(F/K). Substi-

tuting fP for F shows the second order nature of the parallel fault

simulation. There are several techniques for increasing the speed of

parallel simulation, such as fault folding and activity directed

(event-driven) simulation, but none of these techniques changes the

order of the algorithm. The expanded form of this equation then is

-' PFP abcP(fP)/(Cw/b)-1)I

2.2. Deductive Fault Simulation

Deductive fault simulation, developed by Armstrong [9] simulates

only the good machine and computes the effect of the faults with faultI

4 list equations. These equations, defined here as deduction equations,

perform the operations of set intersection, union, and complement on*

fault lists and the super fault list. The super fault list is the list

of all possible faults and the complement of a fault list is defined as

all faults not present in the list, or the super fault list minus the

list to be complemented. The set intersection and union computations

become slow when they involve large sets because these operations]
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3 perform insertions and deletions on ordered sets. The complement opera-

tion is especially costly because it involves copying (with deletions)

the super fault list.

* The deduction equations are data dependent and must be derived dur-

ing simulation. For a gate with all inputs at non-controlling values (0

for an OR and I for an AND) the deduction equation is derived by the

formula: The output list is the union of all the input lists and the

output stuck at the controlling value.

output (union of )output stuck
list al input U <at controlling

lists value

If some of the inputs are at controlling values (1 for an OR and 0 for

an AND) then the equation becomes more complicated. The output list is 4-

the output stuck at the non-controlling value and the intersection of

the complement of the union of non-controlling input lists and the union

* of controlling input lists.

Soutput t  output stuck at( [I union of (union oflist non-controlling on-controlling n controllng
itvalue f input lists q input lists,,

More details of this technique can be found in Baker (10]. The deduc-

tive technique is not as versatile as other fault simulation techniques

because of its list-based algorithm, but recent and advances in string

processors may dramatically change this situation very soon [16]. More

recent work has generalized the deductive simulation technique [17). A

comparison of several fault simulation techniques is presented in Leven- -

del [18] which is particularly interesting because it considers extended

,'- oO . ' .',% - .. ., ,

.• .- , . , • . . . .
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versions of each technique. -

In deductive simulation the number of faults evaluated at each

primitive is the sum of the number of faults present at the inputs of :
the primitive, the output fault, and the total number of faults F if any

lists are complemented. The number of faults present on the inputs isI

much less than the total number of faults so the frequency of list comn-plement operations strongly influences the average number of faults pro-

cessed at each primitive f'. The cost for performing each pass of a

deductive simulation is:

PFP = abcPf'

2.3. Concurrent Fault 3Siation

The concurrent fault simulation algorithm was developed by Ulrich

and Baker [10] and is characterized by scheduling the good machine and

all faulty machines in the same event queue. More recent work has been

reported which emphasizes improving the performance aspects of con-

current simulation [19]. In this technique simulation begins by apply-

ing a vector to the primary inputs and evaluating the first available

prim~itive for the good machine. As each primitive is evaluated, the

faults in that primitive that are activated by the current stimulus

spawn new machines. These machines differ from the good machine by the 7i

effect of the fault. There is no difference in the processing of the

faulty machines and the good machine except that only the good machine

triggers the spawning of new machines. Spawning more faulty machines
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IIfrom faulty machines would effect a multiple fault evaluation. As each

faulty machine is spawned, the current state of the good machine is

duplicated, and the new machine is added to the evaluation queue.I

Clearly, duplicating the entire state of the good machine for each

faulty machine produces maximum flexibility, but is very expensive in

terms of memory space.

Concurrent fault simulation is inherently an event-driven algo-

rithm. Therefore the PFP is dependent on the input stimulus, which

determines what faults are activated, propagated, or absorbed. The

total number of evaluations is the summation over the primitives, of all

the faults propagated to each primitive, plus all the faults activated.

in that primitive, plus the good machine evaluation. This metric,

because of its sensitivity to the input, is dif ficult to use, instead,

use the average number of faults evaluated per primitive f", a measur-

able quantity. Since f" is generally large, any technique which

decreases the average number of faults evaluated per primitive will sig-

nificantly improve the performance of the simulator. A dynamic fault

collapsing technique, detailed in Chapter 3, decreases this average to

the minimum possible value.

The PFP then is the sum of good machine evaluations P, faulty

machine evaluations Pff", and the appropriate constants for activity and

cost:

PFP acP(f".I)



This equation appears linear, but f" is dependent on the number of

primitives, the input, and circuit topology.

2 .4. Characteristics of the Simulation Models

Although these models are quite simple they highlight the salient

parameters that affect simulator performance. The models show that the

performance of all the techniques is a function of the product of primi-

tives and faults, which implies that performance can be improved by

reducing this product. The number of faults can be reduced by parti-

* tioning the fault set or static fault collapsing, and the number of

primitives can be reduced by redefining the system in terms of more

comprehensive primitives. There is a caveat in the last approach

because more complex primitives encompass more faults so the average

number of faults per primitive increases with primitive complexity and

the primitive-fault product may not change very much. However, fault

reduction techniques are more successful with the more complicated

"Primitives", so the total number of faults and therefore the

primitive-fault product can be reduced.

2.5. Concurrent Versus Deductive Simulation

The cost factor for parallel simulation is much smaller than the

cost per evaluation in concurrent simulation because the parallel

evaluation is much less complicated, involves less overhead manipulating

data structures, and is amortized over several different machines. For

* small numbers of faults and primitives, parallel simulation is faster,
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but for large numbers of faults and primitives concurrent simulation is

faster. The crossover point seems to be around 1000 simulator primi-

tives [11]. I
- In this section the two most viable techniques for fault simulation

are compared in sufficient detail to show the advantages and disadvan-

tages of each. The discussion is intended to motivate the development

of a hybrid algorithm which incorporates the advantages of both con-

current and deductive simulation.

The main disadvantages of deductive fault simulation are that it

requires storage of long, ordered fault lists at each node, and the pro-

cessing of these ordered lists is expensive, particularly the complement

operation. Since the complement operation occurs very *frequently, it

severely degrades simulator performance. This technique also suffers a

large memory penalty because the super fault list, which is frequently

scanned, must be explicitly stored in memory. Since only the good

machine is evaluated, and the faulty machines are deduced, all the

faulty machines implicitly have the same timing characteristics as the

good machine, so representation of timing faults is very cumbersome.

One final difficulty with deductive simulation is that the deduction

equations are data dependent and must be derived for each stimulus. The

derivation of these equations is simple for traditional gates, but

becomes much more complicated (and time consuming) for more complex

modules. Expansion of the fault algebra aggravates all of these prob-

lems.
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In comparison, the disadvantages of concurrent simulation are that

it copies the entire machine state each time a new fault is activated.

Copying the entire machine state is expensive in terms of both memory

and time. Since the different machines are completely independent, con- -

current simulation can represent timing faults as easily as level or

logical faults.
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3. HIERARCHICAL FAULT SIMULATION SYSTEK

- The simulation system developed to achieve the research goals, con-

ilsts of three major parts: two preprocessors for the fault library and

circuit source, and an evaluator which performs the fault simulation.

The preprocessors, constructed with LEX [20] , a program for generating

lexical analyzers, and YACC [21] , a program for generating parsers,

parse their respective source files and produce data structures for the

evaluator. The internal data structures are constructed as the source

file is read and the result is a compact, linked list data structure

(directed acyclic graph), with links along all the paths the simulator.

is expected to need. The resulting data structure is then transformed

into a relocatable structure by making all pointers relative to the base

of the data structure. This structure is then written to a file forU
later use by the evaluator.

The data structures were parsed in separate programs for several

reasons. First, under UNIX', it is difficult to call two YACC-generated

parsers from the same program because YACC gives all parsers the same

name. One of the parsers could be renamed by editing the YACC output

file, but this approach adds another step in the edit-compile-test cycle

and is undesirable from a maintainability standpoint. Second, there is

no need to reprocess both the circuit and the fault library if only one

UNIX is a Trademark of Bell Laboratories.

.. J ~
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of the two has changed. For small circuits or fault libraries, this

extra overhead is negligible, but for larger systems the overhead may be

significant. Third, for stylistic and maintenance purposes, it is much

easier to cope with three specialized programs than with one large

conglomeration. In the following sections each part of the simulator is

discussed in detail.

!I
3.1. Fault Library

This section focuses on the fault library segment of the simulator.

The intent is to separate the core evaluation routines o- the simulator

from the details of the fault model. This separation allows the simula-

tor to be used for different technologies without modification, and

allows easy expansion of the simulator primitive set. An algorithm for

combining primitives to form new primitives has been developed which

will be presented in future research.

The fault library represents the precomputation and orderly storage

of fault syndromes for all primitive elements. These syndromes may be

computed for any fault with a logically modelled effect at the output of

the primitive. This means either the wrong logical value, or the

correct value at the wrong time. This allows a more comprehensive fault

model than the traditional stuck-at fault model which has been proven

inadequate [22,23,24]. Precomputation of the fault syndromes decouples

the simulator from the fault model in the sense that the fault model is

embedded in the primitive library instead of in the simulator evaluation

routines. Thus different technologies with different fault models can

I!
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be incorporated in the simulation system by building a primitive library

of fault syndromes which correspond to that technology. This method is,

of course, sensitive to the completeness of the fault library entries

for the primitives.

The preprocessor for the fault library parses the source for the

fault library and produces a relocatable linked list data structure for

the evaluator. The input is structured in a simple LR(O) grammar con-

sisting of about eight keywords, four separators, alphanumeric symbols,

and four-valued signal vectors. The case of alphabetic characters is

significant, and the parser ignores blanks, tabs, new lines, and " /0

comments / A sample entry for a three input AND gate is shown in

Figure 2. Each entry in the fault library begins with the keyword PRIM-

ITIVE, followed by an equal sign, then the name of the primitive. This

name is followed by INPUT, OUTPUT, and FAULTLIST sections. The input

PRIMITIVE=AND3
INPUT 3 1:=A,2=B,3=C

OUTPUT 4 4=FAND
FAULTLIST 7 :

A1,FAND1 011>
B1,FAND1 101>
C1,FAND1 110>
AO,BO,CO,FANDO 111<
FANDI 0??>
FANDI ?0?>
FANDI ??O>

Figure 2. Fault Library Source for a 3 Input AND Gate

P _ S
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and output sections have similar structure, the keyword INPUT or OUTPUT

followed by a number, then a list of signal names and their correspond-

ing positions in the I/O vector. These assignments have the form "sig-

nal number = signal name", and are separated by commas. The number fol- ~

lowing the keyword is the number of signals in the following list and is

used by the parser to allocate storage in advance for the signal list.

The keyword FAULTLIST (if present) is followed by the number of vectors

following the keyword for the same purpose.

The vectors following the keyword FAULTLIST are composed of tuples,

a list of faults covered by the vector and a signal vector composed of

logic values. In the current implementation there are five logic

values:

1logic one
0 logic zero
> error, should be zero but is one under fault

*< error, should be one but is zero under fault
? don't care
% unknown

The exact representation of the logic values is immaterial; these sym-

bols were chosen for ease of parsing, and they are intended for internal

use only. The list of faults included in the tuple has no meaning to

the evaluator. It is completely up to the user to establish any desired

fault naming convention. The set of faults which can produce an error

on a particular line for the current input is indistinguishable [25,26],

so the evaluator does not care whether the fault name list associated

with a vector represents one or many faults. The simulator treats each
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list of fault names uniquely even if there exist other strings with the

same lexical value (sequence of symbols). This uniqueness is required

since two faults may have identical names; the uniqueness is established

by their location in the circuit hierarchy. In fact, the contents of

these name lists are never examined by the simulator.

3.2. Scald Circuit Description

The circuit definition language is a subset of the Structured

Computer-Aided Logic Design language (SCALD) [27]. This language was

chosen because it is a hierarchical circuit description language and --

previous work at the University of Illinois implemented SCALD output

from the graphics editor DRAW [28). In SCALD, the circuit is hierarchi-

cally defined in terms of macromodules which are defined in terms of

other macromodules and/or simulator primitives. Macromodules and primi-

tives may have multiple inputs and outputs. Figure 3 shows the SCALD

definition of an Exclusive Or.

MNAME=XOR;
PARAMETER=a,b,c; S
INV(LOC:XOR1 ) (A=a,FINV:NUL%00001);
INV(LOC=XOR2) (A=b,FINV=NUL%00002);
NAND2(LOC=XOR3) (A=a,B=NUL%00002,FNAND=NUL%00003);
NAND2(LOC=XOR4) (A=b,B=NUL%00001,FNAND=NUL%00004);
NAND2(LOC=XOR5) (A=NUL%00003,B=NUL%00004,FNAND=c);
END; .

Figure 3. SCALD Definition of an Exclusive Or Module

I S
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The module name follows the keyword MNAME and is terminated with a

semicolon. The next line beginning with the keyword PARAMETER

enumerates the input-output lines; order is unimportant. Most simula-

tors are based on gate level primitives with only one output, this is

not adequate since many technologies permit structures which have no

gate equivalent. The multiple input/multiple output capability of SCALD

is much more powerful in this respect. The parameters (signals) are

followed by calls to other modules, either macromodules or primitives.

These calls consist of the module name followed by a unique location and

0then the list of signal bindings. The location distinguishes between

several calls to the same module and the signal bindings provide

correspondences between the signal names in the called module and the

signal names in the calling module. The module calls are followed by

the keyword END to signify the end of the current module definition.

This hierarchical description is compact because each module is

defined only once but can be called many times. This representation is

much more compact than expanding the circuit to the lowest level (simu-

lator primitives). This compactness provides better locality, which is

* important for good cache miss and page fault ratios, since the circuit

* description Is constantly scanned by the evaluator.

* 3.3. The Evaluator

The evaluator is the core of the fault simulation system. This

program reads the data structures produced by the two preprocessors and

relocates each according to its base address. Then some additional
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linking is performed to link SCALD calls to primitives to the appropri- --

ate fault library definition of those primitives, and to link the primi-

tives to a functional evaluation routines. Once this process is com-

plete, the evaluator is ready to apply vectors to the circuit.

The evaluation begins by applying the input vector to the highest

level scald module, which must encompass the entire circuit. The

evaluator reorders the vector and proceeds to call itself recursively

through macromodule calls until a simulator primitive is encountered.

The result of this evaluation is then applied to the next higher module

and another call at that level is given to the evaluator. This process

continues until all the pending activity at the current level is com-,

pleted, then the evaluator returns the result to the next higher level.

This process implements a depth-first evaluation of the circuit.

The evaluation process consists of two major portions, macromodule

evaluation and primitive evaluation. The macromodule evaluation occurs

-' first and is the simplest so it will be discussed first.

3.4. Macromodule Evaluation

Macromodule evaluation consists of two parts, choosing the next

available module call to evaluate and reordering the signal vector for

that call. If a scheduling algorithm is used, the order of evaluation

may not correspond to the static ordering in the module definition,

since some signals may be undefined (internal nodes), and some modules

may be evaluated more than once in sequential circuits. When all the

modules have been evaluated and there is no more internal signal



activity, the macromodule evaluation process terminates by returning to

the calling level, with updated external signal values. These values

may be scheduled for application to the circuit at some time in the

future.

3.5. Primitive Evaluation

Primitive evaluation is somewhat more complicated, but also a two

step process, fault activation in the current module and error propaga-

tion from the inputs to the outputs of the current module.

* 3.5.1. Fault Injection

The fault injection process is characterized by table lookup for

matches in the fault library with the current input vector. These

matches are calculated with a matching function that resolves disparate

values for the same signal into matches or differences. This function

is responsible for matching with don't cares and unknowns. If one or

more vectors are matched from the fault library, the corresponding fault

lists are attached, along with the complete path to the current module,

to all outputs which evidence the errors. A fault (list) may appear on

more than one output, which complicates the task of fault propagation.

3.5.2. Fault Propagation

Once fault activation is complete, the input signals are scanned

for attached fault lists. If the signals contain fault lists, these

lists are decomposed into sets characterized by unique error syndromes

at the inputs of the current module. The decomposition is done with a
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double hashing process: first, the error is hashed according to its name

and location, then according to the input(s) on which it occurs. The

result of this hashing is an inverted list where all of the fault lists

with the same error syndrome are collapsed into a single fault list.

Each of the unique error syndromes is then evaluated with the functional

model of the primitive and the results compared to the good module out-

puts. If the outputs differ, then the errors creating the current syn-

drome propagate on all outputs which differ from the good machine. Pro-

pagation is effected by attaching the list of fault lists to the

appropriate outputs. If the syndrome creates an output which is identi-

cal to the good machine, then the errors are marked as potentially

absorbed (they may be propagated elsewhere) for later processing. Each

syndrome is evaluated in turn until all syndromes are exhausted. In the

worst case, the number of syndromes is equal to the input range of the

module, but in practice it should be only a small fraction. The most

significant feature of this process is that the maximum possible col-

lapsing is performed on error syndromes because they are dynamically

collapsed.
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4. FAULT S]ILATION EXAMPLES

In this chapter the fault simulation algorithm is further clarified

through examples. The first example, an Exclusive Or circuit, demon-

strates the details of the algorithm. The second example, a fast multi-

plier, shows how the simulator behaves with realistic circuits and indi-

cates how well the simulator performs.

4.1.1. Exclusive Or

In this section an example of the simulation algorithm is presented

using an Exclusive Or circuit. This circuit, shown in Figure 4, is a

multiple input, single output module, composed of gate-level primitives.

Although using a gate-level description does not fully utilize the capa-

bilities of the simulator, it is easy to follow.

R XOR 1 XOR3
L S

Figure 4I. Exclusive Or Circuit for Simulation Example i

H 4'

D XORO

i~ C: : W: ; ,5:." " " ""-- .
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The notation used in this example is simple, the gates are referred

to by location, i.e., XOR1, and the circuit nodes are labelled, i.e., T.

Fault names are not required to be unique, and as seen in this example,

a unique location is required to fully qualify fault names. Lists of

indistinguishable faults are enclosed in parentheses with the unique

location beginning the list, and lists of these fault lists are enclosed

in square brackets to denote a fault list. The simulator does not store

the lists or manipulate the data in exactly this form; the notation is

intended for clarity. Some details of the simulation have been left

out, but this example illustrates the essence of the simulation algo-

rithm.

Let the input vector take the value 10 on inputs QR. The scheduler

determines that only modules (in this case primitives) XOR1 and XOR2

have completely known inputs; all other modules have some unknown

inputs. The scheduler chooses to evaluate module XOR1 first because it
S

is the first module in the list of evaluable modules. Evaluating XOR1

for the input Q=1 determines that the output S=O; this constitutes the

good machine evaluation. Next the fault library entry for this type of

module (inverter) is searched for matches with the input vector. This

is the activation phase of fault simulation. One match is found and

this match is attached to the output vector for module XOR1. This
S

attachment is denoted by the signal name and value followed by the list

of fault names:

S=0 [(XOR1,AO,FINV1)]

There are no faults attached to the input so the fault propagation phase

16 S'
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is skipped. The evaluation is completed by scheduling the change in S

to occur at the appropriate time in the future. There is only one

module XOR2 left on the evaluation list, so XOR2 is evaluated next. The

input R:O produces the output T=1 and the fault library search yields

one match,

T=1 [(XOR2,A1,FINVO)]

Again there are no faults attached to the input so the fault propagation

phase is skipped, and the output T is scheduled to change at the

appropriate time in the future. In this example the changes in S and T

* are assumed to occur at the same time.

Since the evaluation list is empty, the simulator clock advances to

the next signal event, where the changes in S and T are applied. The

scheduler checks all modules affected by these changes and finds that

modules XOR3 and XOR4 may now be evaluated. The good machine evaluation

of XOR3 determines that for the input vector QT=11, the output U=0.

Searching the fault library entry for a 2 input NAND produces one

match,

U=O [(XOR3,AO,BO,FNAND1)]

The input Q does not have any attached faults, but the input T does, so

these faults must be checked for propagation through the module. Since

there is only one input with attached faults, no fault collapsing is
0

possible so this step is skipped. Next, the (only) error syndrome is

synthesized QT'=10 and applied to the module, which determines that

U'=. Since U' and U differ propagation occurs, and the fault list
6

associated with this fault syndrome is attached to the output U. The

0i
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resulting fault list attached to U is then

U=O [(XOR3,AO,BO,FNANDI)(XOR2,AI,FINVO)]

As before the evaluation ends by scheduling the output change at the

appropriate time in the future.

The evaluation of XOR4 occurs in a similar fashion. The input vec-

tor RS=O0 produces an output of V=1, and there is one match in the fault

library,

V=1 [(XOR4,FNANDO)]

Again, only one input contains a fault list, so no collapsing is done,

and the one error syndrome, RS'=01, produces an output V'=1. Since V

V,, the fault list associated with the error syndrome is not propagated,

but marked as "potentially" absorbed. Fanout elsewhere in the circuit

could have allowed other paths for the faults to propagate, so the final

determination is delayed until all circuit activity has ceased. In this

case it is easy to see that there is no fanout for this list so the
S

fault list is completely absorbed.

Again, the evaluation queue is empty so the simulation clock is

advanced to the next signal event where the values for U and V are 1-

changed. These signals affect XOR5 so this module is scheduled for

evaluation. The good machine evaluation of XOR5 for the input vector

UV=01 produces the output W=1, and the activation phase finds one match 0

in the fault library,

W=1 [(XOR5,A1,FNANDO)]

Both inputs U and V have attached fault lists so fault collapsing is

4.+
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applied to the input vector. The fault lists are disjoint so no col-

lapsing occurs. The two lists of faults produce two error syndromes,

UV,=11 from [(XOR3,AO,BO,FNAND1)] attached to U
UV"=00 from [(XOR4,FNANDO)] attached to V

Since tha simulator operates under the single fault assumption, there

are no other syndromes possible. Evaluation of the first syndrome

UV,=11 produces an output of W,=O which differs from W, so the associ-

ated fault list is attached to W. The second syndrome UV"=00 produces

an output of W"=1 which is the same as W so the associated fault list

does not propagate, and this list is flagged as potentially absorbed.

The final fault list attached to W is then

W=i [(XOR5,Al,FNANDO)(XOR3,AO,BO,FNANDI)(XOR2,Al,FINVO)]

The evaluation of XOR5 ends by scheduling W to change at some future

time. The queue is again empty so the simulation clock advances to the

only remaining event, and the new value for W is applied. This node has

no fanout to any other modules so no modules are scheduled for evalua-

tion. The event queue and the evaluation queue are now empty so simula-

tion activity is ready to terminate.

The final task remaining is to check the fault list attached to the

primary output against the list of potentially absorbed faults to see

which faults were propagated by alternate paths. Faults which appear in

both lists are removed from the list of potentially absorbed faults

since they are proven to be observable, and the remaining list is

reported as absorbed faults. In this example the list of absorbed

faults is

, ,* ,. • "+
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[(XOR1,AO,FINV1)] at XOR4
[(XOR14,FNANDO)) at XOR5

This information about absorbed faults is useful to a circuit or test

designer since it indicates that the primary input was sufficient to

activate these faults, but that they are not observable because propaga-

tion was blocked at the listed locations.

4.1.2. Fast Multiplier Example

The following example is a 214 bit by 214 bit fast multiplier which

produces a 48 bit result. This size is appropriate for mantissa multi--0

plication of 32 bit floating point numbers. This design trades space

for speed and is quite large; approximately 3 mm by 3 mm, and represents

about 30,000 active devices. For simplicity there are no propagate,0

generate carry signals or carry lookahead. This does not change the

functionality, but it does change the speed of the multiplier. The

salient features of the design which produce its speed are that a number0

of independent partial products are generated in parallel and then

summed in parallel via several stages of highly vertical adders, with

very few carries between adders.

The two 214 bit inputs are divided into 14 bit nibbles, and each com-

bination of nibbles is used to generate one of the 36 partial products.

These partial products are summed in three stages of adders; the first

two stages are highly vertical, while the last stage is more horizontal.

Portions of this example were provided by the General Electric Cor-
porate Research Center.
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The vertical adders are characterized as such because they sum a column

of five, 2 bit wide numbers. The horizontal adders sum two, 4 bit wide

numbers. One of the horizontal types of adders also accepts a carry

input. The carries which normally limit the speed of large additions

must be eventually resolved. This resolution occurs in the last stage

and requires only eight carries between adder modules. The cellular

organization of the multiplier is shown in Figure 5.

The SCALD description of this design represents five levels of

hierarchy with 21,000 interconnections and 4500 instances of primitives.

The partial SCALD description for this circuit is given in Appendix A.

The first level consists of calls to the four types of macromodules pre-

LA AL LLALA WLA 4MLATLA4L LA4 MLATA4ALA41

A223 LA LA LALAL CARRY

I4 4.C *ML441 .4 41MULT441MULT4412

Figure 5. Cellular Organization of' the Fast Multiplier
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viously described. These modules consist of calls to other macromo-

dules, which eventually lead to calls to the simulator primitives.

The 4 by 4 bit multiplier used to generate the partial products is

a combinational multiplier similar to that shown in Hayes [29]. The

multiplier consists of two major parts; an AND array which generates 2

bit partial products and an adder array to sum these products. See Fig-

ures 6 and 7 for more detail.

The partial products generated by these multipliers are summed in

three stages. Each stage is a mixture of three types of adders. The

first type is a vertical adder which adds five, 2 bit wide numbers. The

easiest way to think of the operation of this adder that it produces the

binary weighted sum of the two columns, or the sum of the right column
Y3 Y2 Y1' YO "iii

Y3-

X 3Y3 XY3Y2 X3Y1_ PA 3YO0
Y2

QPSX2Y3 112Y2 XY1 112YO

Y1 -

PA9 ~ lO ~ llPA12

YO

XOY3 XOY2 XOYl XOYO

Figure 6. AND Array for Fast Multiplier Example
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VM "C Ony2 me gf1 W XIYo

SA1 WI SA2 3II A3 O

SA SA-IS

Z7 Z6 Z5 Z4 Z3 Z2 Z1 2O

Figure 7. Sum Array for Fast Multiplier Example

of bits summed with the weighted sum (times 2) of the left column.

While not the largest module, the design for this module is the most

confusing. This design is shown in Figure 8. The final two modules

consist of chains of full and half adders. Their operation is obvious as

shown in Figures 9 and 10.

A4 A3 A2 Al 84 83 82 ,;

F4 F~3 F20F

\FULL ADDER

HALF ADDER

*F8 F7 F6 F5

S3 S2 S1 so

Figure 8. 554 Adder for Fast Multiplier Example
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A3 83 A2 B2 Al B1 AO 80 C

S4 j 2 1 SO

Figure 9. 22235 Adder for Fast Multiplier Example

Vi

A3 83 A2 82 Al 81 AO BO

$4 S3 2 $1 SO

Figure 10. 22225 Adder for Fast Multiplier Example

Using the system profiler [30] the simulator was found to spend

most of its time in fault propagation and garbage collection. Although

performance of the simulator depends on circuit topology, input vector,

and number of faults propagated, approximate performance can be averaged

over a wide range of circuits, for many input vectors. For the multi-

plier the simulator processed the 4500 primitive calls (one pass) in an

average of 45 seconds per input vector (60 seconds with profiling). The

• 
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size of the simulation in memory which depends on these same attributes

stablized at about 1.5M bytes. The memory allocation breaks down as 88K

bytes for the simulator code, 5C bytes for the fault library, 54K bytes

for the SCALD description, and the rest is workspace for fault activity

and circuit evaluation.

I
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5. DISCUSSION AND CONCLUSIONS

The statistics presented in Chapter 4 are very encouraging for

several reasons. First, the system description can be represented in a i.-.

very compact form, and non-faulting simulation measurements show the

overhead for walking the hierarchy is insignificant compared to fault

simulation. Second, the fault library is small and the vector lookup

from the library is quite fast. The library can be kept small by care-

fully choosing its contents. The execution times represent 1-2 orders

of magnitude speed improvement over the TEGAS fault simulator for a

similar circuit. Finally, the workspace is large but quite acceptable

for a large circuit, like the Fast Multiplier example, especially since

no minimization techniques such as data packing have been applied. .y

Experience with the simulation system has shown several major -

advantages to this approach. The compactness of the hierarchical cir-

cuit description is important during execution because it significantly

reduces the run-time memory requirements. The complete design, entry,

and debug cycle for the fast multiplier took only two days. The design

was entered in a top-down fashion. Functional descriptions were pro-

vided for each type of module and the highest level description was

debugged. Then each of the modules was defined in more detail, and

these descriptions were debugged. This define-debug cycle continued

until complete hierarchy was entered and debugged. The author found

p
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that the hierarchical data structures inside the simulator aided the -

development of user-friendly reporting for debugging. In debugging mode

the simulator reports the position in the hierarchy by dumping the

module call stack. The simulator also reports the I/0 vector to the

current module by printing one of the string parameters to the current

evaluation. This contrasts with the complicated number-to-name and

table lookup often required to do similar reporting for flat system

descriptions.

The simulation system as presented in this thesis has been imple-

mented. This implementation was sufficient to design and test the basic

algorithm and with enhancements promises to become a complete and usable

fault simulator. During the development of this simulator the author

found that there were a few disadvantages to simulating from a purely

hierarchical data structure. Specifically, there is some information

which is unique to each instance of a module and cannot be stored in the

hierarchy. For instance, state information is necessary for each

instance of a sequential module. Since the hierarchy is unsuitable for

storing state, some other alternative structure must be used. The

author chose a tree data structure for this unique information because

it is similar to the hierarchy, and there is a convenient mapping from

one structure to the other. In this scheme the simulator can walk the

hierarchy to access invariant information, and walk the tree structure

to access unique information for each module.
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While state information is the most obvious use of the tree, it is

well suited to logging detected faults and removing them from further

consideration. Along with the state vector for each module, the tree

also contains a fault vector with one entry for each vector in the fault

library for that type of module. This vector can be used to mark faults

when they are detected at the primary outputs, and remove them from

further consideration. This marking substantially improves simulator

performance by reducing the number of faults under consideration in

future vectors, which increases the effective execution speed.

This marking can also be used by the user to control which faults

are considered by the simulation. If the user is interested in the

fault coverage of a particular module or type of module but not the rest

of the circuit, then by marking the faults in these modules as

undetected and all others as detected, the simulator will inject only

these faults. The user can then develop a test set for the circuit

module by module, and prevent the simulator from considering faults in

modules that have already been analyzed. This technique is a manual

form of partitioning that allows the user to maintain the full capabil-

ity of the simulator while achieving much better speed by controlling

the fault injection.

@0
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6. FUTRE WORK --

The fault simulation techniques presented in this thesis are far

from complete. The preliminary performance results indicate that these

techniques warrant further exploration. The next step should be the

implementation of tree data structures and fault removal (as faults are

detected) to increase simulator speed. Then signal state retention

should be added to the tree in preparation for sequential capability.

Evaluation of sequential systems and nominal delays should be added by

implementing an event queue and activity-directed evaluation. The

implementation of these capabilities will complete the development of

the fault simulator and should be followed by a thorough performance

analysis.

Once this stage of development is complete, the emphasis should

shift to using this fault simulator as a host for test generation

research. Current research suggests that the additional information

about a system which is available in the hierarchy can be used with

heuristic algorithms and expert systems to automate test generation. As

integrated circuits get more complicated, brute force techniques for

test generation become less feasible. Greater emphasis must be placed

on test generation systems that use intelligence and sophistication to

reduce the computational overhead and produce higher quality tests.

6 , "- , -



APPENDIX A. SCALD SOURCE FOR THE FAST IELTIPLIER

This is the SCALD source for the fast multiplier. The listing

begins with the definiton of the highest level and proceeds by defining

each module in greater detail until the simulator primitives are called

at the lowest level.

MNAME= FASTHULT;
PARAMETER=L3,L2,L1,LO,K3,K2,K1,KO,J3,J2,J1,JO,

13,I2,Il,IO,H3,H2,Hl,HO,G3,G2,Gl,GO,
F3,F2,Fl,FO,E3,E2,E1 ,EO,D3,D2,Dl,DO,
C3,C2,C1,CO,B3,B2,Bl,BO,A3,A2,Al,AO,
M47,M46,HI5,M,M43,M42,M41,M4O0,M39,M38,M37,M36,
M35,M34,M33,M32,M31,M30,29,M28,27,26,25,21,
M23,M22,M21 ,M20,Ml9,H18,M17,Ml6,M15,M'I,M13,Ml2,
M11,MlO,M9,M8,M7,M6,145,M4,M3,M2,Ml,HOGND;

MULT44LOCF)(A3L3,A2=L2,Al=L1,AO=LO,B3=F3,B2=F2,Bl=Fl,BO=FO,
M7=NUL%OOO,M6=NUL%OO1 ,M5=NUL%002,MIINUL%003,M3=NUL%OO1I,
?2=NUL%OO5,M1!NUL%OO6 ,lMINUL%OO7,GND=GND);

MLT44(LOCF2)(A3L3,A2=.2,Al=Ll,AO=LO,B3=E3,B2=E2,Bl=E,BO=EO,
MNUL%OO8,M6=NUL%OO9,M5=NUL%O1O,M4=NUL%O11 ,M3=NUL%O12,

M2=NUL%013,Ml=NUL%0114,M=NUL%015,GND=GND);
MULT44(LOC=F3)(A3=K3,A2=K2,Al=K1,AO=KO,B3=F3,B2F2,BlF,BO=FO,

MNUL%O16,M6NL%017,M5NUL%18,MI=NUL%O19,M3=NUL%020,
M2=NUL%O21 ,M1NUL%022,MO=NUL%023 ,GND=GND);

MULT4(LOC=F4)(A3L3,A2=L2,Al=Ll,AO=LOB3:D3,B2=D2,Bl=D1,BO=DO,
M7=NUL%021 ,M6=NUL%025 ,M5=NUL%026 ,MZ4=NUL%027 ,M3=NUL%028,
M2=NUL%O29 ,Ml=NUL%O3O ,W=NUL%O31 ,GITD=GND);

A554(L0C=F37) /0 0 6
(A4NUL%l20,A3=NUL%128,A2=NUL%136 ,Al=NUL%1'4J,AONUL%152,
B4NUL%12,B3NUL%12,B2NUL%137,BlNUL%15,BO=NUL%153,
S3 :NUL%281, S2=NUL% 285,Si =NUL%286,SO :NUL% 287);

A55I4(LOC=F38) /1 1 */ -.
(A4NUL122,A3NUL%130,A2NUL%138,ANUL%16,AONUL%154,
B4=NUL%123 ,B3=NUL%131 ,B2=NUL%139,B1=NUL%1J47,BO=NUL%155,

4 S3=NUL%288,S2=NUL%289,S1:NUL%290,SO=NUL%291);
A55J4(LOC=F3g) /4 2 6

(A4=NUL% 1214, A3NUL% 132 ,A2=NUL%140 , AlNUL%148, AC NUL% 156,



B4=NUL%l125,B3=NUL% 133, B2=NUL% 141 ,B1 =NUL% 149, BO=NUL% 157,
3NUL%292 , S2=NUL%293, S1 =NUL%294 ,SO=NUL%295);

A5514(LOC=FIO) /0 3 a/
(A4=~NUL%126 ,A3=NUL%13'4,A2=NUL%142,AlhNUL%15O,AO=NUL%158,
Bi4=NUL%127,B3=NUL%135,B2:NUL%143 ,Bl=NUL%151 ,BO=NUL%159,
3=NUL%296 ,S2=NUL%297 ,Si =NUL% 298 ,SO=NUL%299 )

A22225(LOCF61)(A3=NUL%008,A2=NUL%009,Al=NUL%O10,AONUL%11,
/0 x 0/ B3=NUL%O16,B2=NUL%0l7,BlzNUL%O18,BO=NUL%Oi9,

S4=NUL% 378,33 :NUL% 379,S2=NUL% 380,Si :NtL%381,SO=NUL% 382 )
A22225(LOC=F62)(A3NUL%039,A2NUL%088,A=NUL%O89,AO=NUL%09O,
/* y 'I B3=NUL%01I7,B2=NUL%096,Bl=NUL%097,B0=NUL%098,

S4NUL%383,S3UL%38I,S2NUL%385,Sl:NUL%386,SO=NUL%387);
A22225(L0C=F63)(A3=NUL%26II,A2=NUL%265,Al=NUL%266,AO=NUL%267,

/0 z a/ B3=NUL%272,B2=NUL%273,Bl=NUL%27i,BO=NUL%275,
S'h=NUL%388,S3NUL%389,S2=NUL%39O,S1=NUL%391 ,SO=NUL%392);

A22235(LOC=F64)(A3=NUL%104,A2NUL%105,Al=NUL%106,AO=NUL%107,
/a a v/ B3=NUL%1 12,B2=NUL%113,Bl=NUL%114,BO=NUL%115,CO=NUL%099,

S'I=NUL%33,S3=NUL%391I,S2=NUL%3g5,S1!NUL%396,S0:NUL%397);
/0next level 0/

A22225(LOC:F80) (A3=NUL%3118,A2=NUL%3119,Al=NUL%350 ,AO=NUL%351,
/* f 0/ B3=NUL%346,B2=NUL%31I7,Bl=NUL%352,BO=NUL%353,

S=UL%6,S3=M9,S2=18,Sl=?47,SO=M6);
A22235(LOC=F79)(A3=NUL%340,A2NUL%341,Al=NUL%3I2,A0NUL%343,
/e 0/ B3=NUL%338,B2=NUL%339,BlNUL%3441,BONUL%35,CO=NUL%460,

S4NUL%157,3NUL%458,S2ZNUL%459,S1:Mll,SO=MlO);
A55Ji(LOC=F78) /0 d 0

(A4=NUL%334, A3=NUL%336,A2=GND, Al =NUL% 389,AO=GND,
BM=NUL%335,B3=NUL%337 ,B2=GND,B1 =NUL%39O ,BO=GND,
S3=NUL%453 ,S2=NUL%154,S1 :NUL%1I55,SO=NUL% 456);

A55'(L0C=F77) /* a 0
(A4=NUL% 332,A3=N1UL%322,A2=NUL%330,Al !GND, AO=GND,
B4=NUL%333,B3=NUL%323,B2=NUL%331 ,Bl=NUL%388,BO=GNDI

* S3=NUL%49,2NUL%450,S1NUL%451 ,S0=NUL%1452);

A22235(L0C=F66) (A3=NUL%00M ,A2=NUL%005,AlNUL%351,AO=NUL%355,
/* 1 4/ B3:NUL%379,B2:NUL%380,BI=NJL%381 ,BO=NUL%382,C0=UL%408,

* SJ4NUL%43,S3NUL%404,S2:NUL%405,S=NUL%406,S0=NUL%407);
A22235(L0C=F65)(A3!NUL%000,A2=NUL%001 ,A1:NUL%002,AO=NUL%003,
/0 0 */ B3:GND,B2=GND,Bl=GND,BNUL%378,CONUL%I03,

S:NUL%398,S3:NUL%399,S2=NUL%400,Sl:NUL%401,SONUL%402);
/* final stage of adders 0/
A22225(LOC:F89)(A3=GND,A2=NUL%457,Al=NUL%458,AO=NUL%459,

4 /0 8 1/B3=NUL%455,B2=NUL%456,Bl=NUL%391,B0=NUL%392,
S4NUL%469,S3M5,S2Ml4,S1:M3,S0=Ml2);



A22235(LOC=F88) (A3NULJ449,A2NUL%a5,Al=NUL1451 ,AO=NUL%4~52,
/0 7 /B3=NUL%47,B2=NUL%8,B=NUL%53,BONUL%45i,CO=NUL%469,

SNUL%68,S3M9,S2M8,SlMl7,SO=Ml6);

A22225(LOC=F81 )(A3=NUL%399,A2=NUL%4OO,AlNUL%O1 ,AO=NUL%4O2,
/* 0 0/B3=GND,B2=GND,Bl=GND,BO=NUL%I62,

S4=NUL%146 1,S3=M47 ,S2=MI6 ,Si=M45 ,SO=M44 )
END;

MNAME=A2223 5;
PARAMETEIR=A3,A2,Al,A0,B3,B2,Bl,B,C,3I,S3,S2,S1,SO;
FA(LOC=A22235j) (A=AO,B=BO,CIN=CO,COUT=NUL%000,SUM=-SO);
FA(L0CA22235...)(A=A1 ,B=Bl ,CIN:NUL%O00,COUTNL%001 ,SUM=-S1);
FA(LOC:A22235-3)(A=A2,B=B2,CIN=NUL%O0l ,COUT=NUL%002,SUMS32);
FA(LOC=A222359-4)(A=A3,B=B3,CIN=NUL%002,COUT=S4,SUM=-S3);

* END;

f MNAME=A22225;
PARAMETER=A3,A2,Al,AO,B3,B2,Bl,BO,SI,S3,S2,Sl,SO; -

HA( LOC=A22225-1) (A=AO, B=BO ,COUT:NUL%000 ,SUM=SO);
FA(L0C=A22225_2) (A=Al ,B=Bl,CIN=NUL%000 ,COUT=NUL%00l ,SUM=S1);
FA(LQC:A22225..3)(AA2,BB2,CIN=NUL%00l ,COUT=NUL%0O2,SUMA-S2);
FA(LOC=A222254)(A=A3,BB3,CINNUL%002,COUT=S4,SUM=S3);
END;

MNAME=HA;
PARAMETER= A, B, COUT, SUM;
X0R2(LOC=HAI) (A=A,B=B,FXOR=SUM);a

p AND2(LOC=HA2)(A=A,B=B,FAND=COUT);
END;

MNAME=FA;
PARAMETER=A, B, CIN, COUT, SUM;
XOR3(LOC=FA1 )(A=A,B=B,C=CIN,FXOR=SUM);

* AND2(LOC=FA2)(A=B,B=CIN,FAND=d4UL%000);
AND2(LOC=FA3) (A=A,B=CIN,FAND=NUL%O01);
AND2(LOC=FA4) (A=A,B=B,FAND=NUL%0O2);

* OR3(LOC=FA5)(A=NUL$0O2,B=NUL%001 ,C=NUL%00O,FOR=COUT);
END;

MNAME=A55I;
PARAMETERA,A3,A2,Al,AO,B4,B3,B2,Bl,BO,S3,S2,Sl,SO;
FA(LOCA554-)(A=B2,B=B1,CIN=BO,

COUT=NUL%00l ,SUM=-NUL%000);
HA(LOC=A554-2)(A=B4,B=B3,

COUT=NUL%003 ,SUM=NUL%002);
FA(LUC=A554_3) (A:A2,B:Al ,CIN=AO,
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C0UT=NUL%005,SUM=-NUL%004);
HA(L0C=A554__A) (A=A4,B=A3,

COUT=NUL% 007 ,SUH= NUL% 006);
HA( L0CA55L.5) (A=NUL% 002, B=NUL% 000,

COUT=NUL%008, SUM-S0);
FA(L0C=A55.6) (A=NUL%003 ,B=NUL%001 ,CIN=NtJL%008,

COUT=NUL%01O,SUMHNUL%009);
HA(LOC=A554_7) (A=NUL%006 ,B=NUL%004,

COUT:NUL%012 ,SUM=-NUL%01 1);
FA(LOC=A55'4_)(A=NUL%007,B=NUL%005,CIN=NUL%012,

COUT=NUL%014,SUM--NUL%013);
HA( LOC=A554_9) (A=NUL%01 1 ,B=NUL%009,

COUT=NUL%015,SUMHS1);
FA(L0C=A55'1O) (A=NUL%013 ,B=NUL%010 ,CIN=NUL%015,

COUT=NUL%016 ,SU14=S2);
0R2(L0C=A554-..11)(ANUL%14,BNUL%016,C=S3);
END;

MNAME=PARRAY4X;
PARAMETER=X3,X2,X1 ,XO,Y3,Y2,Y1 ,YO,

X3Y3,X3Y2,X3y1 ,X3yO,X2y3,12Y2,X2Y1 ,X2YO,
X1Y3,X1!2,X1Y1 ,X1YO,XOY3,XOY2,XOY1 ,XOYO;

AND2(L"OC=PA ) (A=X3,BY3,FAND=X3y3);
AND2(LOC=PA2) (A=X3,B=Y2,FAND=X3Y2);
AND2(LCC=PA3) (A=X3,B=Y1 ,FAND=X3y 1);
AND2(LOC=PA4) (A=X3,B=Y0,FAND=X3y0);
AND2( LOC=PA5) (A=X2,B=Y3,FAND=X2Y3);
AND2( LOC=PA6) (A:X2,B=Y2,FAND=X2Y2);
AND2(LOC=PA7) (A=X2,B=Y1,FAND=X2Y 1);
ANID2(L0C=PA8)(A=X2,B=Y0,FAND=X2Y0);
AND2(LOC=PA9)(A=X1,B=y3,FAND=X1Y3);
AND2(LOC=PA1O) (A=X1 ,B=Y2,FAND=XlY2);
AND2(LOC=PA11)(A=X1 ,B=Y1 ,FAND=XlYl);
AND2(LOC=PA12) (A=X1,B=YO,FAND=XlYO);
AND2( L0C=PA1 3) (A=X0,B=Y3 ,FAND=XOY3);

* AND2(L0C=PA1J4)(A=X0,B=Y2,FAND=X0Y2);
AND2(L0C=PA15) (ftXB=Y1,FAND=XOY1);
AND2(LOC=PA16) (A=XO,B=YO,FAND=XOYO);
END;

MNAMESARRAYX4;
4 PAIRAMETER=X3Y3,X3Y2,X3y1 ,X3YO,X2y3,X2Y2,X2Y1 ,X2YO,

X1Y3,X1Y2,XlY1 ,X1Y0,XOY3,XOY2,XOY1 ,XOYO,
Z7,Z6,Z5,ZII,Z3,Z2,Z1 ,ZO,GND;

WIRE(LOC=SA1 )(A=XOYO,B=ZO);
FA(LOC=SA2) (A=XOY1 ,B=GND,CIN=XlY0,CUTUL%004,SUH=Z1);
FA(L0C=SA3)(A=X0Y2,BGND,CIN=XlT1,COUT=NUL%002,SUM=NUL%003);
FA(LOC=SAII)(A=X0Y3,B=GND,CIN=XlY2,COUT=NUL%000,SUMNUL%001);
FA(LOC=SA5)(A=N'UL%003,B=NUL%O004,CIN=X2Y0,COUT:NUL%009,SUH--Z2);
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FA(LOC=SA6) (A=NUL%OO1 ,B=NUL% 002, CIN=X2Y 1 , COUT=NUL% 007, SUM--NUL% 008);
FA(LOC=SA7)(A=X1Y3,B=NUL%OO,CINX2Y2,COUT=NUL%OO5,SUM-NUL%O6);
FA(LOC=SA8)(A=NUL%OO8,B=NUL%OO9,CINX3YO,CUT=NULO1I,SUM-Z3);
FA(LOC=SA9) (A=NUL%OO6 ,B=NUL%007 ,CIN=X3Y1 ,COUT=NUL%O12,SUM=NUL%O13);
FA(LOC=SA1O)(A=X2y3,B=NUL%OO5,CIN=X3Y2,COUT=NUL%01O,SUM=-NUL%O11);

po FA(LOC=SAll)(A=NUL%O13,B=NULO11I,CIN=GND,COUT=NUL%O16,SUMZ);
FA(LOC=SA12)(A=NUL%011,B=NUL%O12,CIN=NUL%016,COUT=NUL%O15,SUM=Z5);
FA(LOC=SA13)(AX3y3,B=NUL%010,CIN=NUL%O15,COUT=Z7,SUM=Z6);
END;

MNAME=ULT44I;
PARAMTER=A3,A2,A,AO,B3,B2,Bl,BO,M7,M6,M5,M4,M3,M2,M,MO,GND;
PARRAY4X4(LOCMl)(X3=A3,X2=A2,Xl=A1,X0=AO,y3=B3,Y2=B2,Yl=B1,YO=BO,

X3Y3=NUL%OOO,X3Y2=NUL%OO1 ,X3yl=NUL%002,X3yO=NUL%003,
X2y3=NUL%OO4,X2Y2=NUL%OO5,X2Y1=NUL%OO6 ,X2YO=NUL%0O7,
X1Y3=NUL%0O8,XlY2=NUL%0O9,XlYl=NUL%O1O ,X1YO=NULO1 1,
XOY3=NUL%O12,XOY2=NUL%O13,XOY1=NUL%O1l4,XOYO=NUL%O15);

SARRAYIX'(LOC=M2) (
X3y3=NUL%OOO,X3Y2=NUL%OO1 ,X3y1=NUL%002,X3yO=NUL%003,
X2y3=NULOOII,X2Y2=NUL%OO5,X2Yl=NUL%OO6 ,X2Y0=NUL%007,
X1Y3=NUL%OO8,XlY2=NUL%OO9,X1Yl=NUL%O1O,XlYO=NUL%O1 1,
XOY3=NUL%O12,XOY2=NUL%O13,XOY1NUL%114,XOYO=NUL%O15,
Z7MZ=6Z=5Z=4Z=3,2MlMOMN=N)

END;
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APPENDIX B. FAULT LIBRARY SOURCE

This listing is the source for the fault library. All the primi-

tives used by the simulator must appear in this library. The fault vec-

tor entries are optional and can be removed to turn off fault simula-

tion.

PRIMITIVE=WIRE
INPUT 1 : 1=A
OUTPUT 1 2=B
DELAY 0

PRIMITIVE=BUF
INPUT 1 1=A
OUTPUT 1 2=FBUF
DELAY 1
FAULTLIST 2
AO,FBUFO 1<
Al ,FBUF1 O>

PR IMITIVE= INVERT
INPUT I : 1=A
OUTPUT 1 :2=ABAR
DELAY 1
FAULTLIST 2
AO,B1 1>
A1,BO 0<

PRIMITIVE= XOR2
INPUT 2 1=A,2=B
OUTPUT 1 3=FXOR
DELAY 1
FAULTLIST 4
AO,FXORO 10<
BO,FXORO 01<
AO,BO,FXOR1 11>
A1,B1,FXOR1 00>

PRIMITIVE=XOR3
INPUT 3 1:=A,2=B,3=C
OUTPUT 1 :=FXOR

-1
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DELAY 1
FAULTLIST 8
AO,FXORO 100<
BO,FXOR0 010<
CO,FXORO 001<
BO,CO,FXOR1 011>
AO,CO,FXOR1 101>
A0,BO,FXOR1 110>
A0,BO,CO,FXOR0 111<
Al,Bl,C1,FXOR1 000>

L PRIMITIVE=AND2
INPUT 2 1=A,2=B
OUTPUT 1 3=FAND
DELAY 1
FAULTLIST 4
AO,BO,FANDO 11<
A1,FAND1 01>
Bi ,FAND1 10>
FAND1 00>

PRIMITIVE=AND3
INPUT 3 1=A,2=B,3=C
OUTPUT 1 4=FAND5 DELAY 1
FAULTLIST 7
Al ,FAND1 011>
Bl,FAND1 101>
C1,FAND1 110>
AO,BO,C0,FANDO 111<

lpFAND1-1 0??>
FAND1-2 ?0?>
FAND1-3 ?O

PRIMITIVE=AND4I
IN PUT 4 1=,=,=,=
OUTPUT 1 5=FAND
DELAY 1
FAULTLIST 9
Al ,FAND1 0111>
B1,FAND1 1011>
C1,FAND1 1101>
D1,FAND1 1110<
AO,BO,CO,DO,FANDO 1111<
FAND1-1 0???>
FAND1-2 0?
FAND1-3 ?>
FAND1-4??>
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PRIMITIVE=AND5
INPUT 5 1=A,2=B,3=C,1I=D,5=E
OUTPUT 1 6=FAND
DELAY 1
FAULTLIST 11
Al ,FAND1 01111>
Bl,FAND1 10111>

*C1,FAND1 11011>
D1,FAND1 11101>
E1,FAND1 11110
AO,BO,CO,DO,EO,FANDO 11111<
FAND1-1 0????>
FAND1-2 ???
FAND1-3 ?O?
FAND1-4 ??
FAND1-5 ??O

PR IMITIVEz NAND2
INPUT 2 1=A,2=B

OUTPUT 1 3=FNAND
DELAY 1
FAULTLIST 4I
AO,BO,FNAND1 11>
A1,FNANDO 01<
B1,FNANDO 10<
A1lBlFNANDO 00<

PRIMITIVE=NAND3
INPUT 3 1=A,2=B,3=C
OUTPUT 1 4=FNAND
DELAY 1
FAULTLIST 8
AO,BO,CO,FNAND1 111>
A1,FNANDO 011<

B1,FNANDO 101<
*C1,FNANDO 110<

Al ,B1 ,C1,FNANDO 000<
FANDO-1 0?
FANDO-2 ??
FANDO-3 ?O

* PRIMITIVE=NANDI
INPUT 4I 1=A,2=B,3=C,4=D
OUTPUT 1 5=E
DELAY 1
FAULTLIST 10
AO,BO,CO,DO,FNAND1 1111>

4 Al ,FNANDO 0111<
B1,FNANDO 101l<
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Cl,FNANDO 1101<CD1,FNANDO 1110<

A1,B1,Cl,D1,FNANDO 0000<
FNANDO-1 ?<
FNANDO-2 0?
FNANDO-3 ?<
FNANDO-4 ??O

P1RIMITIVE= 0R2
INPUT 2 1=A,2=B
OUTPUT 1 3=C
DELAY 1
FAULTLIST 4
A1,B1,C1 00>
AO,CO 10<
BO,CO 01<
CO 11<

PRIMITIVE=OR3
INPUT 3 1=A,2=B,3=C
OUTPUT 1 4=FOR
DELAY 1
FAULTLIST 6
A1,B1,C1,FOR1 000>

U AO,FORO 100<
BO,FORO 010<
CO,FORO 001<
FORO 110<
FORO ill<

p4 PRIMITIVE=NOR2
INPUT 2 1=A,2=B

OUTPUT 1 3=FNOR
DELAY 1
FAULTLIST 4~
A1,B1,FNOIRO 00<
BO,FNOR1 01>
AO,FNOR1 10
FNOR1 11>

PRIMITIVES NOR3
-INPUT 3 1=A,2=B,3=C

OUTPUT 1 4=FNOR
DELAY 1
FAULTLIST 7
Al ,B1 ,C,FNORO 000<
AO,FNOR1 100>
BO,FNOR1 010
CO,FNOR1 001>
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FNOR1-1 1??>
FNOR1-2 ??
FNOR1-3 ?l

PRIMITIVE: NORII
INPUT 4i 1=A,2=B,3=C,I=D
OUTPUT 1 5=FNOR
DELAY 1
FAULTLIST 9
A1,B1,Cl,Dl,FNORO 0000<
AO,FNOR1 1000
BO,FNOR1 0100
CO,FNOR1 0010
DO,FNOR1 0001>
FNOR1-1 1?'??>
FNOR1-2 21??>
FNOR1-3 ?>
FNOR1-4 ???1>

PRIMITIVE=MULT44
INPUT 8 1=A3,2=A2,3=Al,4AO,5=B3,6B2,7=E1,8=BO
OUTPUT 8 9=,10M6,11M5,12M4,13M3,14=2,15=Ml,16=MJ
DELAY 1

PRIMITIVE: AS554
INPUT 10 1=A4,2=A3,3=A2,4A,5A,6B,7=B3,8=B2,9=Bl,10=O
OUTPUT 4I ll=S3,12=S2,13=SllliSO
DELAY 1

PRIMITIVE=A22225
0.INPUT 8 1=A3,2=A2,3=A1 ,'IAO,5:B3,6=B2,7=B1 ,8=BO

OUTPUT 5 9=S1,10=S3,11=32,12=S1,13=S0
DELAY 1

PRIMITIVE=A22235
*INPUT 9 l1A3,2=A2,3=A1,1I:AO,5:B3,6=B2,7=E1,8:BO,g:CO

OUTPUT 5 10=SZ,11=S3,12=S2,13=S1,1JIS0
DELAY 1

END

6-
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APPEMDIX C. SAMPLE MAIN PROGRAM

This is a sample main program to illustrate how the simulator is

called. The simulator is designed as a set of callable subroutines,

some routines which perform 10 are optional. The simulator was designed

this way to allow the user to code special purpose main programs to suit

the 10 needs for each system to be simulated. The main program can be

coded to interactively interrogate the user for input and simulator

options in a form suitable to the user, and then restructure the data in

the form the simulator expects. This design also allows the simulator

to be called from other programs such as test pattern generators or

other simulators.

#include <stdio.h>
#include-"../lib/struct.h" /' simulator type definitions 1
#include "../lib/mainglobals.h" /O global variable declarations /

main() {
int initsim(, setobserveo, evaluate(, displaylistso;
int i, length, level, modtype, activity;
char inline[256];
struct sigvector vector;

]* This routine reads the fault library and system descriptions ]
/0 then links the two with the functional procedures. /I
initsimo;

L- /0 This routine interrogates for the pin numbers the user wishes

/* to observe fault behavior. It flags these pins so the /
/0 displaylists routine will output faults propagated to these pins. 9/
/ This routine is optional vectorflags is used only by displaylists /"
setobserve (vectorflags);

while (1) f /0 interactive 10 routine /1
for (i=O; i<=MAXSIGS; i++) {/ Init the signal vector /

i
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vector. value[iJ:NULL;
vector. faultlist~i]=NULL;

fprintf(stderr,"Olease input a vector: )
if ((ength = getline~inline,MAXSIGS)) ==0) break;
for (i=1; i<=length; i++.) vector-value[i] = inline[i-1J;
level = 0; /1 flag the outer level for evaluate 0/
modtype = 2;!/1 the outer level must be a scald module '
I' call to the evaluator, level and modtype should be 0,2 '
/0 vector contains the input vector, activity is unused '
/0 scaldroot is a pointer set by the initialization '
evaluate Cscaldroot,&vector ,modtype ,level, &activity);

/0 This routine processes faults attached to the output vector .
1. Only the pins flagged in vectorflags are considered.
I' The reporting is done in terms of the system hierarchy. I

displaylists(&vector,vectorflags);

* fprintf(stderr,"Good-Bye ... 0);

L.-- -
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